
DEFINE DATA

General Syntax

Note:
If more than one clause is used, the GLOBAL, PARAMETER, OBJECT, LOCAL, INDEPENDENT and
CONTEXT clauses must be specified in the order shown above.
An "empty" DEFINE DATA statement is not allowed; in other words, at least one clause (GLOBAL,
PARAMETER, OBJECT, LOCAL, INDEPENDENT or CONTEXT) must be specified and at least one field
must be defined.

Function
The DEFINE DATA statement is used to define the data areas which are to be used within a Natural program. When
a DEFINE DATA statement is used, it must be the first statement of the program/routine.

DEFINE DATA in Structured Mode

In structured mode, all variables to be used must be defined in the DEFINE DATA statement; they must not be
defined elsewhere in the program.

1Copyright Software AG 2003

DEFINE DATADEFINE DATA

DEFINE DATA in Reporting Mode

In reporting mode, the DEFINE DATA statement is not mandatory since variables may be defined in the body of the
program. However, if a DEFINE DATA LOCAL statement is used in reporting mode, variables (except AIVs) must
not be defined elsewhere in the program; and if a DEFINE DATA INDEPENDENT statement is used in reporting
mode, application-independent variables (AIVs) must not be defined elsewhere in the program.

DEFINE DATA OBJECT

DEFINE DATA OBJECT is used in conjunction with NaturalX. It is described in the NaturalX documentation.

data areas
Natural supports three types of data areas:

global data area
parameter data area
local data area

global data area

A global data area contains data elements which can be referenced by more than one programming object (as
described in section Object Types of the Natural Programming Guide). The global data area and the objects which
reference it must be contained in the same library (or in a steplib). No more than one global data area is allowed per
DEFINE DATA statement.

parameter data area

A parameter data area contains data elements which are used as parameters in a subprogram, external subroutine or
dialog. Parameter data elements must not be assigned initial or constant values, and they must not have EM, HD or
PM definitions. Parameter data elements can also be defined within the subprogram/subroutine itself. Parameters can
also be defined within a helproutine.

local data area

A local data area contains data elements which are to be used in a single Natural module. (Local data can also be
defined directly within a program or routine.) A data area defined using DEFINE DATA LOCAL may be a
parameter data area.

All three types of data areas can be created and maintained by using the data area editor.

block
Data blocks can overlay one another during program execution, thereby saving storage space.

The maximum number of block levels is 8 (including the master block).

.block

.block notations(s) specify the block(s) which are used in the program.

For further information on data blocks, see the section Data Blocks in the Natural Programming Guide.

Copyright Software AG 20032

DEFINE DATAdata areas

data-definition

level Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading "0" is optional) used in
conjunction with field grouping. Fields assigned a level number of 02 or greater are considered to be
a part of the immediately preceding group which has been assigned a lower level number.
The definition of a group enables reference to a series of fields (may also be only 1 field) by using the
group name. This provides a convenient and efficient method of referencing a series of consecutive
fields.
A group may consist of other groups. When assigning the level numbers for a group, no level
numbers may be skipped.
A view-definition must always be defined at level 1.

group-nameThe name of a group. The name must adhere to the rules for defining a Natural variable name.

3Copyright Software AG 2003

data-definition DEFINE DATA

parameter-data-definition

group-name [(array-definition)]

redefinition

(format-length [/ array-definition])level variable-name [BY VALUE [RESULT]] [OPTIONAL]

A

[/ array-definition] DYNAMIC
B

parameter-handle-definition [BY VALUE [RESULT]] [OPTIONAL]

Copyright Software AG 20034

DEFINE DATAparameter-data-definition

level This is the same as under data-definition.

group-name This is the same as under data-definition.

variable-name This is the same as under variable-definition.

format-length This is the same as under variable-definition.

DYNAMIC

A parameter may be defined as DYNAMIC. For more information on processing dynamic
variables, see Large and Dynamic Variables/Fields.
Depending on whether call-by-reference or call-by-value is used, the appropriate transfer
mechanism is applicable. For further information, see the CALLNAT statement.

BY VALUE

Without BY VALUE (default), a parameter is passed to a subprogram/subroutine by reference
(that is, via its address); therefore a field specified as parameter in a CALLNAT/PERFORM
statement must have the same format/length as the corresponding field in the invoked
subprogram/subroutine.
With BY VALUE, a parameter is passed to a subprogram/subroutine by value; that is, the actual
parameter value (instead of its address) is passed. Consequently, the field in the
subprogram/subroutine need not have the same format/length as the CALLNAT/PERFORM
parameter. The formats/lengths must only be data transfer compatible. For data transfer
compatibility, the Rules for Arithmetic Assignment/Data Transfer apply (see Statement Usage
Related Topics).
BY VALUE allows you, for example, to increase the length of a field in a subprogram/subroutine
(if this should become necessary due to an enhancement of the subprogram/subroutine) without
having to adjust any of the objects that invoke the subprogram/subroutine.

For parameter definitions for dialogs (under Windows), the following applies:
- Without BY VALUE, a parameter, as specified in the inline definition of a dialog’s parameter
data area, is transferred via its address (by reference); the format and length of the parameter in an
OPEN DIALOG or SEND EVENT statement, for example, must match the format and length of
the parameter in the inline parameter data definition of the dialog. You can use a parameter by
reference in the before open and after open event handlers and in all other events if the used
parameters are transferred in the SEND EVENT statement triggering this event.
- With BY VALUE, a parameter is transferred via its value; format and length do not have to
match; the parameter in the OPEN DIALOG or SEND EVENT statement must be data transfer
compatible with the parameter of the dialog.

BY VALUE
RESULT

While BY VALUE applies to a parameter passed to a subprogram/subroutine, BY VALUE
RESULT causes the parameter to be passed by value in both directions; that is, the actual
parameter value is passed from the invoking object to the subprogram/subroutine and, on return to
the invoking object, the actual parameter value is passed from the subprogram/subroutine back to
the invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned must be data transfer
compatible in both directions.

Note: BY VALUE RESULT cannot be used in dialogs.

OPTIONAL

For a parameter defined without OPTIONAL (default), a value must be passed from the invoking
object. For a parameter defined with OPTIONAL, a value can--but need not be--passed from the
invoking object to this parameter.
In the invoking object, the notation nX is used to indicate parameters which are skipped, that is,
for which no values are passed.

With the SPECIFIED Option you can find out at run time whether an optional parameter has been
defined or not.

5Copyright Software AG 2003

parameter-data-definitionDEFINE DATA

Example of BY VALUE:

 * Program
 DEFINE DATA LOCAL
 1 #FIELDA (P5)
 ...
 END-DEFINE
 ...
 CALLNAT ’SUBR01’ #FIELDA
 ...

 * Subroutine SUBR01
 DEFINE DATA PARAMETER
 1 #FIELDB (P9) BY VALUE
 END-DEFINE
 ...

Example of BY VALUE for Dialog:

 /*Example of three parameters not passed BY VALUE:
 1 #A (A10) /* Parameter Data Definition
 1 #B (A20) /* of the called Dialog
 1 #C (A30) /*
 OPEN DIALOG ’MYDIALOG’ #DLG$WINDOW WITH #X #Y #Z /* #X has to be A10,#Y has to
 /* be A20,and #Z has to be A30
 /*Example of three parameters passed BY VALUE:
 1 #A (A10) BY VALUE /* Parameter Data Definition
 1 #B (A20) BY VALUE /* of the called Dialog
 1 #C (A30) BY VALUE /*
 OPEN DIALOG ’MYDIALOG’ #DLG$WINDOW WITH #X #Y #Z /* #X may be A1, #Y may be
 /* A100,and #Z may be A253

parameter-handle-definition

handle-definition

Copyright Software AG 20036

DEFINE DATAExample of BY VALUE:

The use of "handle-definition" with "dialog-element-type" is only possible under Windows.

handle-name The name to be assigned to the handle; the naming conventions for user-defined variables
apply (see the section Naming Conventions under User-Defined Variables).

dialog-element-typeThe type of dialog element (only possible under Windows). Its possible values are the values
of the TYPE attribute. For details, see the sections Dialog Elements and Attributes of the
Natural Dialog Component Reference documentation for Windows.

OBJECT Is used in conjunction with NaturalX as described in the NaturalX documentation.

The HANDLE definition in the DEFINE DATA statement is generated automatically on the creation of a dialog
element or dialog.

After having defined a handle, you can use the handle-name in any statement to query, set or modify attribute values
for the defined dialog-element-type (see the section Event-Driven Programming Techniques in the Natural
Programming Guide).

Examples of handle-definitions:

 1 #SAVEAS-MENUITEM HANDLE OF MENUITEM
 1 #OK-BUTTON (1:10) HANDLE OF PUSHBUTTON

Note:
If you use "block" structures, a HANDLE OF OBJECT may only be defined in the master block, but not in any
subordinate blocks.

view-definition

7Copyright Software AG 2003

view-definitionDEFINE DATA

A view-definition is used to define a view as derived from a DDM.

In a parameter data area, view-definition is not permitted.

view-name The name to be assigned to the view. Rules for Natural variable names apply.

ddm-name The name of the DDM from which the view is to be taken.

level Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading "0" is optional)
used in conjunction with field grouping. Fields assigned a level number of 02 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower level
number.

The definition of a group enables reference to a series of fields (may also be only one field) by
using the group name. This provides a convenient and efficient method of referencing a series of
consecutive fields.

A group may consist of other groups. When assigning the level numbers for a group, no level
numbers may be skipped.

ddm-field The name of a field to be taken from the DDM.

When you define a view for a HISTOGRAM statement, the view must contain only the descriptor
for which the HISTOGRAM is to be executed.

format-length Format and length of the field. If omitted these are taken from the DDM.
In structured mode, the definition of format and length must be the same as those in the DDM.
In reporting mode, the definition of format and length must be compatible with those in the
DDM.

array-definition Depending on the mode used, arrays (periodic-group fields, multiple-value fields) may have to
contain information about their occurrences. For more information, see the explanation below the
table.

DYNAMIC Defines a view field as DYNAMIC. For more information on processing dynamic variables, see
the section Large and Dynamic Variables/Fields.

array-definition

In structured mode, if a field is used in the view which represents an array, you must include a corresponding index
range in the view definition.

Structured Mode:

Adabas: If array fields defined in a DDM are to be used inside a view, these fields must contain an explicit array
definition. The array dimensions must match the corresponding DDM definition exactly (considering the inheritance
of array dimensions of previous groups). Only the array bounds may differ. The number of occurrencies must not
pass the maximum of 191 and the index range must be within the defined index range of the DDM (periodic groups
and multiple fields: (1:191)).

SQL: No array definitions allowed.

XML: If array fields defined in a DDM are to be defined inside a view, these fields must contain an explicit array
definition. The array dimensions must match the corresponding DDM definition exactly. Only the index range may
differ. The number of occurrences must not exceed the defined one and the index range must be within the defined
index range. If X-arrays are defined in DDM, they also may be used inside the view.

Note:
A DDM of type XML is only valid under Windows and UNIX.

Copyright Software AG 20038

DEFINE DATAview-definition

The following table shows which view definition is allowed according to the DDM definition:

Note:
In the table, Z: is an integer variable, and X1, X2, Y1, Y2, Y: are constants or constant expressions.

 view-definition

DDM definition allowed not allowed

A(*:X2) A(*:Y2) Y2≤X2
A(Y1:Y2) Y2>Y1
Y2≤X2 A(Z:Z+Y) Y≥0

A(*:*)
A(Y1:*)

A(X1:*) A(Y1:*) Y1≥X1
A(Y1:Y2) Y2≥X1, Y1≥X1
A(Z:Z+Y) Y≥0

A(*:*)
A(*:Y2)

A(X1:X2) A(Y1:Y2) Y2<Y1
A(Z:Z+Y) 0≤Y≥X2-X1+1

A(*:*)
A(Y1:*)
A(*:Y2)

Examples:

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES
2 NAME(A20)
2 ADDRESS-LINE(A20 / 1:2)
/* or
1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(1:2)
/* or
1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(2)
/* or
1 #K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

Reporting Mode

In this mode, the same rules are valid as for structured mode. However, there is one exception: the specification of
array bounds is not a must. The index range may be omitted completely. In this case the index range for the missed
dimensions is set to (1:1).

Examples:

9Copyright Software AG 2003

view-definitionDEFINE DATA

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES
2 NAME(A30)
2 ADDRESS-LINE(A35 / 5:10)
/* or
1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(A40)
/* or
1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE
/* or
1 #K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

redefinition

REDEFINE field-name level
rgroup

rfield(format-length / array-definition)
FILLER nX

Copyright Software AG 200310

DEFINE DATAredefinition

A redefinition may be used to redefine a group, a view, a DDM field or a single field/variable (that is a scalar or an
array).

field-name The name of the group, view, DDM field or single field that is being redefined.

level This is the same as under data-definition.

rgroup The name of the group resulting from the redefinition.
Note:
In a "redefinition" within a "view-definition", the name of "rgroup" must be different from any field
name in the underlying DDM.

rfield The name of the field resulting from the redefinition.
Note:
In a "redefinition" within a "view-definition", the name of "rfield" must be different from any field
name in the underlying DDM.

format-length The format and length of the rfield.

FILLER nX With this notation, you define n filler bytes - that is, segments which are not to be used - in the field
that is being redefined. The definition of trailing filler bytes is optional.

Restrictions Regarding Handles, X-Arrays and Dynamic Variables

Handles, X-arrays and dynamic variables cannot be redefined and cannot be contained in a redefinition clause.
A group that contains a Handle, X-array or a dynamic variable can only be redefined up to - but not including or
beyond - the element in question.

Note:
In a "parameter-data-definition", a "redefinition" of groups is only permitted within a REDEFINE block; otherwise
internal errors might occur when passing parameters between the calling program and the called subprogam.

REDEFINE - Example 1:

 DEFINE DATA LOCAL
 01 #VAR1 (A15)
 01 #VAR2
 02 #VAR2A (N4.1) INIT <0>
 02 #VAR2B (P6.2) INIT <0>
 01 REDEFINE #VAR2
 02 #VAR2RD (A10)
 END-DEFINE
 ...

REDEFINE - Example 2:

 DEFINE DATA LOCAL
 01 MYVIEW VIEW OF STAFF
 02 NAME
 02 BIRTH
 02 REDEFINE BIRTH
 03 BIRTH-YEAR (N4)
 03 BIRTH-MONTH (N2)
 03 BIRTH-DAY (N2)
 END-DEFINE
 ...

11Copyright Software AG 2003

redefinitionDEFINE DATA

REDEFINE - Example 3:

 DEFINE DATA LOCAL
 1 #FIELD (A12)
 1 REDEFINE #FIELD
 2 #RFIELD1 (A2)
 2 FILLER 2X
 2 #RFIELD2 (A2)
 2 FILLER 4X
 2 #RFIELD3 (A2)
 END-DEFINE
 ...

variable-definition

With a variable definition a single field/variable (that is a scalar or an array) is defined.

Copyright Software AG 200312

DEFINE DATAvariable-definition

variable-nameThe name to be assigned to the variable. Rules for Natural variable names apply. For information
on naming conventions for user-defined variables, see the section Statement Usage Related Topics.

format-length The format and length of the field. For information on format/length definition of user-defined
variables, see the section Statement Usage Related Topics.

DYNAMIC A field may be defined as DYNAMIC. For more information on processing dynamic variables, see
the section Large and Dynamic Variables/Fields.

CONSTANT The variable/array is to be treated as a named constant. The constant value(s) assigned will be used
each time the variable/array is referenced. The value(s) assigned cannot be modified during
program execution.

Note: For reasons of internal handling, it is not allowed to mix variable definitions and constant
definitions within one group definition; that is, a group may contain either variables only or
constants only.

INIT The variable/array is to be assigned an initial value. This value will also be used when this
variable/array is referenced in a RESET INITIAL statement.

If no INIT or CONSTANT specification is supplied, a field will be initialized with a default initial value depending
on its format (see Default Initial Values below).

Default Initial Values

Format Default Initial Value

B, F, I, N, P 0

A blank

L F(ALSE)

D D’ ’

T T’00:00:00’

C (AD=D)

GUI Handle NULL-HANDLE

Object Handle NULL-HANDLE

init-definition

Note:
The INIT and CONST clauses cannot be used with X-arrays.

13Copyright Software AG 2003

init-definitionDEFINE DATA

constant The constant value with which the variable is to be initialized; or the constant value to be
assigned to the field. See the section Statement Usage Related Topics for further information on
constants.

system-variable The initial value for a variable may also be the value of a Natural system variable.

Note:
When the variable is referenced in a RESET INITIAL statement, the system variable is evaluated
again; that is, it will be reset not to the value it contained when program execution started but to
the value it contains when the RESET INITIAL statement is executed.

FULL
LENGTH

LENGTH n

As initial value, a variable can be filled, entirely or partially, with a specific single character or
string of characters (only possible for alphanumeric variables).

With the "FULL LENGTH" option, the entire field will be filled with the specified character or
characters.

With the "LENGTH n" option, the first n positions of the field will be filled with the specified
character or characters. n must be a numeric constant.

Example of System Variable as Initial Value:

 DEFINE DATA LOCAL
 1 #MYDATE (D) INIT <*DATX>
 END-DEFINE

Example of FULL LENGTH:

In this example, the entire field will be filled with asterisks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT FULL LENGTH <’*’>
 END-DEFINE

Example of LENGTH n:

In this example, the first 4 positions of the field will be filled with exclamation marks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT LENGTH 4 <’!’>
 END-DEFINE

array-definition

{ bound [:bound] }, 3

Copyright Software AG 200314

DEFINE DATAarray-definition

You define the lower and upper bound of a dimension in an array-definition. You can define up to 3 dimensions for
an array.

If only one bound is specified, the specified bound is assumed to be the upper bound and the lower bound is assumed
to be 1.

bound

A bound can be one of the following:

a numeric integer constant;
a previously defined named constant;
(for database arrays) a previously defined user-defined variable; or
* defines an extensible bound, otherwise known as an X-array.
Note:
X-arrays are only available under Windows and UNIX.

If at least one bound in at least one dimension of an array is specified as extensible, that array is then called an
X-array (eXtensible array). Only one bound (either upper or lower) may be extensible in any one dimension, but not
both. Multi-dimensional arrays may have a mixture of constant and extensible bounds, e.g. #a(1:100, 1:*).

Example:

DEFINE DATA LOCAL
1 #ARRAY1(I4/1:10)
1 #ARRAY2(I4/10)
1 #X-ARRAY3(I4/1:*)
1 #X-ARRAY4(I4/*,1:5)
1 #X-ARRAY5(I4/*:10)
1 #X-ARRAY6(I4/1:10,100:*,*:1000)
END-DEFINE

If the following table you can see the bounds of the arrays in the above program more clearly.

 Dimension1
Lower bound

Dimension1
Upper bound

Dimension2
Lower bound

Dimension2
Upper bound

Dimension3
Lower bound

Dimension3
Upper bound

#ARRAY1 1 10 - - - -

#ARRAY2 1 10 - - - -

#X-ARRAY3 1 eXtensible - - - -

#X-ARRAY4 1 eXtensible 1 5 - -

#X-ARRAY5 eXtensible 10 - - - -

#X-ARRAY6 1 10 100 eXtensible eXtensible 1000

Examples of Array Definitions:

 #ARRAY2(I4/10) /* a one-dimensional array
 #X-ARRAY4(I4/*,1:5) /* a two-dimensional array
 #X-ARRAY6(I4/1:10,100:*,*:1000) /* a three-dimensional array

15Copyright Software AG 2003

array-definitionDEFINE DATA

Variable Arrays in a Parameter Data Area

In a parameter data area, you may specify an array with a variable number of occurrences. This is done with the
index notation "1:V ". For example:

 #ARRAYX (A5/1:V)

 #ARRAYY (I2/1:V,1:V)

An array that is defined with index "1:V" must not be redefined or be the result of a redefinition. As the number of
occurrences is not known at compilation time, it must not be referenced with the index notation (*) in any statement,
except ADD, COMPRESS, COMPUTE, DISPLAY, DIVIDE, EXAMINE, IF, MULTIPLY, RESET, SUBTRACT.

A variable array can only be referenced either in its entirety (that is, all its occurrences) or as a scalar value (that is, a
single occurrence). For example:

 #ARRAYX (*)
 #ARRAYY (*,*)
 #ARRAYX (1)
 #ARRAYY (5,#FIELDX)

A partial range of a variable array must not be referenced:

 #ARRAYY (1,*) /* not allowed

To avoid runtime errors, the maximum number of occurrences of such an array should be passed to the
subprogram/subroutine via another parameter.

Notes:
If a parameter data area that contains an index "1:V" is used as a local data area (that is, specified in a DEFINE
DATA LOCAL statement), a variable named "V" must have been defined as CONSTANT.
In a dialog, an index "1:V" cannot be used in conjunction with BY VALUE.

See also the system variable *OCCURRENCE in the Natural System Variables documentation.

array-init-definition

Copyright Software AG 200316

DEFINE DATAarray-init-definition

With this clause, you define the initial/constant values for an array.

For a redefined field, an array-init-definition is not permitted.

ALL All occurrences in all dimensions of the array are initialized with the same value.

index Only the array occurrences specified by the index are initialized. If you specify index, you can
only specify one value with constant; that is, all specified occurrences are initialized with the
same value.

V This notation is only relevant for multidimensional arrays if the occurrences of one dimension are
to be initialized with different values. "V" indicates an index range that comprises all occurrences
of the dimension specified with "V"; that is, all occurrences in that dimension are initialized. Only
one dimension per array may be specified with "V". The occurrences are initialized occurrence by
occurrence with the values specified for that dimension. The number of values must not exceed
the number of occurrences of the dimension specified with "V".

constant The constant (value) with which the array is to be initialized (INIT), or the constant to be assigned
to the array (CONSTANT). See the section Statement Usage Related Topics for further
information on defining constants.

Note:
Occurrences for which no values are specified, are initialized with a default value.

system-variable The initial value for an array may also be the value of a Natural system variable.

Note:
Multiple constant values/system variables must be separated either by the input delimiter
character (as specified with the session parameter ID) or by a comma. A comma must not be used
for this purpose, however, if the comma is defined as decimal character (with the session
parameter DC).

FULL
LENGTH
LENGTH n

As initial value, it is also possible to have an array filled, entirely or partially, with a specific
single character or string of characters (only possible for alphanumeric arrays).

With "FULL LENGTH", the entire array occurrence(s) are filled with the specified character or
characters.

With "LENGTH n", the first n positions of the array occurrence(s) are filled with the specified
character or characters.

A system-variable must not be specified with "FULL LENGTH" or "LENGTH n".

Within one array-init-definition, only either "FULL LENGTH" or "LENGTH n" may be
specified; both notations must not be mixed.

17Copyright Software AG 2003

array-init-definitionDEFINE DATA

Example of LENGTH n for Array:

In this example, the first 5 positions of each occurrence of the array will be filled with "NONON".

 DEFINE DATA LOCAL
 1 #FIELD (A25/1:3) INIT ALL LENGTH 5 <’NO’>
 ...
 END-DEFINE

Numerous examples of assigning initial values to arrays are provided in the Natural Programming Guide.

emhdpm

([EM = value] [HD = ’ value ’] [PM = value])

Copyright Software AG 200318

DEFINE DATAemhdpm

With this option, additional parameters to be in effect for the field/variable may be defined.

EM=value This parameter may be used to define an edit mask. See the session parameter EM in the Natural
Parameter Reference documentation.

HD=’value’ This parameter may be used to define the header to be used as the default header for the field (see the
DISPLAY statement).

PM=value This parameter may be used to set the print mode, which indicates how fields are to be output. See the
session parameter PM in the Natural Parameter Reference documentation.

If for a database field you specify neither an edit mask (EM=) nor a header (HD=), the default edit mask and default
header as defined in the DDM will be used.
However, if you specify one of the two, the other’s default from the DDM will not be used.

19Copyright Software AG 2003

emhdpmDEFINE DATA

AIV-data-definition

level

variable-definition

redefinition

handle-definition

Additional Rules

An application-independent variable must be defined at level 01. Other levels are only used in a redefinition.
The CONSTANT clause must not be used in this context.
The first character of the name must be a "+". Rules for Natural variable names apply. For information on
naming conventions for user-defined variables, see the section Naming Conventions under User-Defined
Variables
The fields resulting from the redefinition must not be application-independent variables, that is their name must
not start with a ’+’. These fields are treated as local variables.

Copyright Software AG 200320

DEFINE DATAAIV-data-definition

DEFINE DATA INDEPENDENT is used to define application-independent variables (AIVs).

An application-independent variable is referenced by its name, and its content is shared by all programming objects
executed within one application that refer to that name. The variable is allocated by the first executed programming
object that references this variable and is deallocated by the LOGON command or a RELEASE VARIABLES
statement. The optional INIT clause is evaluated in each executed programming object that contains this clause (not
only in the programming object that allocates the variable).

level

variable-definition

redefinition

handle-definition

context-data-definition

level

variable-definition

redefinition

handle-definition

21Copyright Software AG 2003

context-data-definitionDEFINE DATA

Additional rules:

A context variable must be defined at level 01. Other levels are only used in a redefinition.
The CONSTANT clause must not be used in this context.
The fields resulting from the redefinition are not considered a context variable. These fields are treated as local
variables.

DEFINE DATA CONTEXT is used in conjunction with Natural RPC. It is used to define variables known as context
variables, which are meant to be available to multiple remote subprograms within one conversation, without having
to explicitly pass the variables as parameters with the corresponding CALLNAT statements.

A context variable is referenced by its name, and its content is shared by all programming objects executed in one
conversation that refer to that name. The variable is allocated by the first executed programming object that contains
the definition of the variable and is deallocated when the conversation ends. The optional INIT clause is evaluated in
each executed programming object that contains this clause (not only in the programming object that allocates the
variable). This is different to the way the INIT works for global variables.

Context variables can also be used in a non-conversational CALLNAT. In this case, the context variables only exist
during a single invocation of this CALLNAT but the variables can be shared with all its callees.

A context variable is not shared with subprograms that are called within the conversation. If such a subprogram or
one of its callees references a context variable, a separate storage area is allocated for this variable.

For further information, see Defining a Conversation Context in the Natural RPC documentation.

level

variable-definition

redefinition

handle-definition

Copyright Software AG 200322

DEFINE DATAcontext-data-definition

Qualifying Data Structures
To identify a field when referencing it, you may qualify the field; that is, before the field name, you specify the name
of the level-1 data element in which the field is located and a period.

If a field cannot be identified uniquely by its name (for example, if the same field name is used in multiple
groups/views), you must qualify the field when you reference it.

The combination of level-1 data element and field name must be unique (see first example below).

The qualifier must be a level-1 data element (see second example below).

Example:

 DEFINE DATA LOCAL
 1 FULL-NAME
 2 LAST-NAME (A20)
 2 FIRST-NAME (A15)
 1 OUTPUT-NAME
 2 LAST-NAME (A20)
 2 FIRST-NAME (A15)
 END-DEFINE
 ...
 MOVE FULL-NAME.LAST-NAME TO OUTPUT-NAME.LAST-NAME
 ...

Example:

 DEFINE DATA LOCAL
 1 GROUP1
 2 SUB-GROUP
 3 FIELD1 (A15)
 3 FIELD2 (A15)
 END-DEFINE
 ...
 MOVE ’ABC’ TO GROUP1.FIELD1
 ...

Note:
If you use the same name for a user-defined variable and a database field (which you should not do anyway), you
must qualify the database field when you want to reference it; because if you do not, the user-defined variable will be
referenced instead.

23Copyright Software AG 2003

Qualifying Data StructuresDEFINE DATA

Example 1

 /* EXAMPLE ’DDAEX1’: DEFINE DATA
 /***
 DEFINE DATA LOCAL
 01 #VAR1 (A15)
 01 #VAR2
 02 #VAR2A (N4.1) INIT <1111>
 02 #VAR2B (N6.2) INIT <22222>
 01 REDEFINE #VAR2
 02 #VAR2C (A2)
 02 #VAR2D (A2)
 02 #VAR2E (A6)
 END-DEFINE
 /**
 WRITE NOTITLE ’=’ #VAR2A / ’=’ #VAR2B /
 ’=’ #VAR2C / ’=’ #VAR2D / ’=’ #VAR2E
 /***
 END

#VAR2A: 1111.0
 #VAR2B: 222222.00
 #VAR2C: 11
 #VAR2D: 11
 #VAR2E: 022222

Example 2

 /* EXAMPLE ’DDAEX2’: DEFINE DATA (ARRAY DEFINITION/INITIALIZATION)
 /***
 DEFINE DATA LOCAL
 01 #VAR1 (A1/1:2,1:2) INIT (1,V) <’A’,’B’>
 01 #VAR2 (N5/1:2,1:3) INIT (1,2) <200>
 01 #VAR3 (A1/1:4,1:3) INIT (V,2:3) <’W’,’X’,’Y’,’Z’>
 END-DEFINE
 /***
 WRITE NOTITLE ’=’ #VAR1 (1,1) ’=’ #VAR1 (1,2)
 / ’=’ #VAR1 (2,1) ’=’ #VAR1 (2,2)
 /***
 WRITE /// ’=’ #VAR2 (1,1) ’=’ #VAR2 (1,2)
 / ’=’ #VAR2 (2,1) ’=’ #VAR2 (2,2)
 /***
 WRITE /// ’=’ #VAR3 (1,1) ’=’ #VAR3 (1,2) ’=’ #VAR3 (1,3)
 WRITE / ’=’ #VAR3 (2,1) ’=’ #VAR3 (2,2) ’=’ #VAR3 (2,3)
 WRITE / ’=’ #VAR3 (3,1) ’=’ #VAR3 (3,2) ’=’ #VAR3 (3,3)
 WRITE / ’=’ #VAR3 (4,1) ’=’ #VAR3 (4,2) ’=’ #VAR3 (4,3)
 /***
 END

Copyright Software AG 200324

DEFINE DATAExample 1

#VAR1: A #VAR1: B
 #VAR1: #VAR1:

 #VAR2: 0 #VAR2: 200
 #VAR2: 0 #VAR2: 0

 #VAR3: #VAR3: W #VAR3: W

 #VAR3: #VAR3: X #VAR3: X

 #VAR3: #VAR3: Y #VAR3: Y

 #VAR3: #VAR3: Z #VAR3: Z

Example 3

 /* EXAMPLE ’DDAEX3’: DEFINE DATA (VIEW DEFINITION, REDEFINE ARRAY)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (A20/2)
 2 PHONE
 1 #ARRAY (A75/1:4)
 1 REDEFINE #ARRAY
 2 #ALINE (A25/1:4,1:3)
 1 #X (N2) INIT <1>
 1 #Y (N2) INIT <1>
 END-DEFINE
 /***
 FORMAT PS=20
 LIMIT 5
 FIND EMPLOY-VIEW WITH NAME = ’SMITH’
 MOVE NAME TO #ALINE (#X,#Y)
 MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
 MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
 MOVE PHONE TO #ALINE (#X+3,#Y)
 IF #Y = 3
 RESET INITIAL #Y
 PERFORM PRINT
 ELSE
 ADD 1 TO #Y
 END-IF
 AT END OF DATA
 PERFORM PRINT
 END-ENDDATA
 END-FIND
 /***
 DEFINE SUBROUTINE PRINT
 WRITE NOTITLE (AD=OI) #ARRAY(*)
 RESET #ARRAY(*)
 SKIP 1
 END-SUBROUTINE
 /***
 END

25Copyright Software AG 2003

Example 3DEFINE DATA

SMITH SMITH SMITH
 ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
 MILWAUKEE MONTERREY
 554349 (414)877-4563 (408)994-2260

 SMITH SMITH
 5 HAWTHORN 2307 DARIUS LANE
 OAK BROOK TAMPA
 (312)150-9351 (813)131-4010

Example 4

 /* EXAMPLE ’DDAEX4’: DEFINE DATA (GLOBAL, PARAMETER AND LOCAL AREAS)
 /***
 /* MAIN PROGRAM
 /***
 DEFINE DATA GLOBAL USING GLOBAL-1
 LOCAL
 1 #FIELD1 (A10)
 1 #FIELD2 (N5)
 END-DEFINE
 /***
 /* ...
 CALLNAT ’SUBP1’ #FIELD1 #FIELD2
 /* ...
 END

 /* SUBPROGRAM ’SUBP1’
 DEFINE DATA PARAMETER
 1 #FIELDA (A10)
 1 #FIELDB (N5)
 END-DEFINE
 /***
 /* ...
 END

Example 5

 * EXAMPLE ’DDAEX5’: DEFINE DATA (INITIALIZATION)
 **
 DEFINE DATA LOCAL
 1 #START-DATE (D) INIT <*DATX>
 1 #UNDERLINE (A50) INIT FULL LENGTH <’_’>
 1 #SCALE (A65) INIT LENGTH 65 <’....+..../’>
 END-DEFINE
 *
 WRITE NOTITLE #START-DATE (DF=L)
 / #UNDERLINE
 / #SCALE
 END

Copyright Software AG 200326

DEFINE DATAExample 4

1999-01-19
 __
 +..../....+..../....+..../....+..../....+..../....+..../....+

Example 6

 /* EXAMPLE ’DDAEX6’: DEFINE DATA (VARIABLE ARRAY)
 /***
 DEFINE DATA
 PARAMETER
 01 #STRING (A1/1:V)
 01 #MAX (P3)
 LOCAL
 01 #I (P3)
 END-DEFINE
 /***
 F0R #I = 1 TO #MAX
 IF #STRING (#I) < H’40’
 MOVE H’40’ TO #STRING (#I)
 END-IF
 END-FOR
 END

Example 7

DEFINE DATA LOCAL
 1 #MyHomePage (A4096) /* alpha variable with max. 4096 characters
 1 #MyStream (B1000000/1:10) /* binary array with 10 occurrences and max. 1000000 bytes per occ.
 1 #MyDynHomePage (A) DYNAMIC /* dynamic alpha variable
 1 #MyDynStream (B) DYNAMIC /* dynamic binary variable
 END-DEFINE

27Copyright Software AG 2003

Example 6DEFINE DATA

	DEFINE DATA
	General Syntax
	Function
	DEFINE DATA in Structured Mode
	DEFINE DATA in Reporting Mode
	DEFINE DATA OBJECT

	data areas
	global data area
	parameter data area
	local data area

	block
	.block

	data-definition€
	parameter-data-definition
	Example of BY VALUE:
	Example of BY VALUE for Dialog:
	parameter-handle-definition
	handle-definition
	Examples of handle-definitions:

	view-definition
	array-definition

	redefinition
	REDEFINE - Example 1:
	REDEFINE - Example 2:
	REDEFINE - Example 3:

	variable-definition
	Default Initial Values

	init-definition
	Example of System Variable as Initial Value:
	Example of FULL LENGTH:
	Example of LENGTH n:

	array-definition
	Examples of Array Definitions:
	Variable Arrays in a Parameter Data Area

	array-init-definition
	Example of LENGTH n for Array:

	emhdpm

	AIV-data-definition
	Additional Rules

	context-data-definition
	Qualifying Data Structures
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

